## **REVIEW ARTICLE**

# **Surgical Management of Empyema**

Amer Bilal, M. Salim Khan

#### HISTORICAL BACKGROUND:

Thoracic surgery as a specialty had its beginning in the surgical treatment of pulmonary tuberculosis and its pleural space problems<sup>1</sup>. This began with using sand bags and positioning of patients with the diseased side down. Fowler (1893) and Delorme (1894) were the first physicians to describe how to free the entrapped lung and in 1886 Delorme first used the term decortication<sup>2</sup>. Decortication departed from the classic approach of aspiration, open drainage and Thoracoplasty for the treatment of chronic empyema<sup>3</sup>. More than 50 years from its inception decortication of the lung in the treatment of chronic empyema was finally established<sup>3-4</sup>.

## PRINCIPLES OF MANAGEMENT:

As for pus collection anywhere in the body, the principles of management are to drain the pus, obliterate the space and treat the infection. Best tissue to obliterate the space is to get the lung to expand, fill the chest cavity. For the lung to expand constricting fibrous peel over the lung and constricting thickened parietal pleura have to be removed. This is decortication whether open or VATS. If the lung fails to expand, then either the space has to be obliterated by a space obliteration procedure, or permanently drained via a stoma/ Eloesser. Pros & Cons, indications & limitations of each procedure are detailed below<sup>5</sup>.

## **TUBE THORACOSTOMY:**

Acute thoracic empyema is usually an extension of pulmonary infection. Adequate dependant drainage of an acute exudative empyema can be provided by chest tube with closed water seal drainage and suction<sup>6</sup>. However if the tube is positioned improperly or if the collection has progressed to a stage in which it has become semisolid (Fibrino purulent), the drainage will be incomplete. Closed chest tube drainage is the first step in the treatment of acute empyema<sup>7</sup>. It is rightly effective in treating uncomplicated Para pneumonic effusions and classic empyema without loculation<sup>8</sup>. After placement, underwater seal drainage with moderate suction (-10cm H20) is then applied to drain the purulent fluid and obliterate the space. When this approach is successful, clinical improvement is generally noted within 48 to 72 hours. Chest radiography reveals evacuation of fluid and re-expansion of the lung. Drainage should progressively decrease and the fluid should clear<sup>9</sup>. When the drainage has decreased to 50ml in 24 hrs period and the lung has expanded, the chest tube can be removed. This usually occurs within 5 to 10 days. The success of closed drainage depends primarily on the state of empyema when treated<sup>10-11</sup>.

Department of Cardiothoracic Surgery, Post Graduate Medical Institute, Lady Reading Hospital Peshawar, Pakistan.

## FIBRINOLYSIS:

Thoracostomy tube may provide incomplete drainage of thick pus. Loculation of empyema cavities is produced by membranes composed of fibrin<sup>12-13</sup>. Fibrinolytic agents can be used to dissolve these membranes. Streptokinase and streptodornase instilled into empyema pockets, dissolve and breakup loculations and aid in the drainage of thick pus. Significant systemic reactions are often associated with the use of these enzymes<sup>14</sup>. More recently streptokinase has been purified and it along with urokinase which is not as allergenic has been found useful. These agents are efficient debriding agents. Success rate upto 80% the use of streptokinase in patients with loculated empyema despite the fact the only small catheters were used for drainage<sup>15</sup>. The enzyme is instilled into the empyema cavity through the chest tube while the patient is in decubitis position, empyema side up. Streptokinase (250000 U) mixed in 100ml of normal saline is injected via syringe through the tube. The procedure is repeated daily. Fibrinolytic therapy is valuable adjunct to chest tube drainage and despite the cost urokinase may be desirable because of local systemic reactions to streptokinase<sup>16-17</sup>.

## **DECORTICATION:**

**VIDEO ASSISTED THORACOSCOPY:** Video assisted thoracoscopy (VATS) has become the primary modality for treating complicated empyema after initial treatment with or without chest tube drainage <sup>17-18</sup>. VATS allows better adhesiolysis and debridement with better exposure. Decortication for lung expansion before fibrosis, can be accomplished with equal facility. Although chest tube drainage combined with enzymatic debridement is effective, VATS therapy results in higher success rate (90%) shorter hospital stay and less cost <sup>19</sup>. In early case a fairly effective decortication can be accomplished. Once the peel has become thick and well organized decortication is much more effectively done by open thoracotomy <sup>20</sup>.

## **OPEN THORACOTOMY:**

The key to restoring good health to a patient with thoracic empyema is thorough cavitary debridement with removal of all pus and necrotic tissue and re-expansion of healthy lung to fill the pleural space. Controlling any residual pulmonary disease and removing any constricting tissue that prevent full expansion are therefore important considerations<sup>21-22</sup>. Decortication is successful when the fibro elastic peel that traps the lung leaves the visceral pleura relatively normal and the lung itself expandable so that the empyema space can be obliterated by pulmonary re-expansion when the peel is removed<sup>23</sup>. Best results are obtained with decortication in the early chronic phase of empyema secondary to pneumonia or traumatic Pneumothorax<sup>24</sup>. Decortication has also proved extremely successful in children. However this is a major procedure which may be unsuitable in frail and elderly patients. Decortication is contraindicated in major bronchial obstruction, pulmonary destruction, uncontrollable sepsis, contra lateral disease, chronic debilitation or prohibitive concomitant organ system dysfunction. Fibrothorax must be differentiated from Mesothelioma and malignancies metastatic to pleural space<sup>25</sup>.

## SPACE OBLITERATION PROCEDURES:

## THORACOPLASTY:

If the lung does not expend to the chest wall, then collapse therapy can bring the chest wall to the lung or mediastinum. There are three basic types of thoracoplasty<sup>30</sup>. The conventional Thoracoplasty (Alexander) involves the subperiosteal, extrapleural, posterolateral resection of sufficient ribs to obliterate the intrathoracic space. Thoracoplasty does obliterate the intrathoracic space very successfully and permanently controls the empyema. It also often closes a Bronchopleural fistula. The overall success rate of thoracoplasty in eliminating thoracic space problem is 73%<sup>31</sup>. The major disadvantage of an extensive Thoracoplasty is the disability that occurs postoperatively. The immediate physiologic sequelae are the development of an paradoxic motion of the chest wall. If the mediastinum was mobile, Mediastinal flutter occurs. The cough mechanism is reduced as a result of inability to generate a high positive pressure. The late physiologic changes are skeletal deformities<sup>32</sup>.

## **MUSCLE TRANSPOSITION:**

Although plombage is now of only historic significance, the concept of filling the pleural space led to transposition of chest wall muscles into a chronic empyema cavity. Muscle is an ideal tissue to place in a contaminated space because it obliterates the space and its rich blood supply not only resist infection but helps to control it<sup>31-33</sup>.

The latissimuss dorsi, pectoralis major, pectoralis minor, serratus anterior and rectus abdominal muscles and the omentum can be rotated singly or in combination to obliterate any residual pleural space. An interesting new development is the use of intrathoracic free flaps using microvascular techniques<sup>34</sup>.

## **ELOESSER FLAP:**

The Eloesser flap was devised to provide tubeless drainage of a loculated space within the pleural cavity or entire pleural space for a post Pneumonectomy empyema. The procedure as originally conceived by Eloesser was designed to produce a one way valve allowing pus to aggress but not allowing the ingress of air, thus maintaining the pleural negative pressure while allowing drainage of the pleural space without a tube<sup>25-26</sup>. The procedure made a U shaped skin incision producing a skin flap that is based towards patient's head. A segment of rib is resected over the most dependent portion of the empyema cavity. The skin flap is folded into the opening and sutured to the pleura so that the drainage site through the chest wall is lined by skin on the upper half of the tract<sup>27</sup>. Any loculation are broken down and fibrinous debris removed. The wound is packed to debride the empyema space and to keep the tract open until the pleural space is obliterated<sup>28</sup>. The packing is changed daily with wet to dry dressing using saline or Dackins solutions. However it may take many months until the cavity is obliterated. In many of these patients Thoracoplasty or muscle flap can be used to obliterate the cavity and attain early healing<sup>27-29</sup>.

## **REFERENCES:**

- Keeling A N, Leong S, Logan P M, Lee M J. Empyema and effusion: outcome of image-guided small-bore catheter drainage. Cardiovasc Intervent Radiol. 2008;31(1):135–141.
- 2. Moulton JS, Benkert RE, Weisiger KH, Chambers JA. Treatment of complicated pleural fluid collections with image-guided drainage and intracavitary urokinase. Chest. 1995;108(5):1252–1259.
- 3. Feller-Kopman D. Ultrasound-guided thoracentesis. Chest. 2006;129(6):1709–1714.
- 4. Liu YH, Lin YC, Liang SJ, et al. Ultrasound-guided pigtail catheters for drainage of various pleural diseases. Am J Emerg Med. 2010;28(8):915–921.
- 5. Light R W. Pleural Diseases. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001.
- Shankar S, Gulati M, Kang M, Gupta S, Suri S. Image-guided percutaneous drainage of thoracic empyema: can sonography predict the outcome? Eur Radiol. 2000;10(3):495–499.
- 7. Rahman NM, Maskell NA, Davies CW, et al. The relationship between chest tube size and clinical outcome in pleural infection. Chest. 2010;137(3):536–543.
- 8. Davies HE, Rahman NM, Parker RJ, Davies RJ. Use of indwelling pleural catheters for chronic pleural infection. Chest. 2008;133(2):546–549.
- 9. Pierrepoint MJ, Evans A, Morris SJ, Harrison SK, Doull IJ. Pigtail catheter drain in the treatment of empyema thoracis. Arch Dis Child. 2002;87(4):331–332.
- 10. Dev S P, Nascimiento B, Jr, ,Simone C, Chien V. Videos in clinical medicine. Chest-tube insertion. N Engl J Med. 2007;357(15):e15.
- 11. Pollak JS, Burdge CM, Rosenblatt M, Houston JP, Hwu WJ, Murren J. Treatment of malignant pleural effusions with tunneled long-term drainage catheters. J Vasc Interv Radiol. 2001;12(2):201–208.
- 12. Davies C W, Gleeson F V, Davies R J, Pleural Diseases Group, Standards of Care Committee, British Thoracic Society BTS guidelines for the management of pleural infection. Thorax. 2003;58(Suppl 2):ii18–ii28.
- 13. Temes RT, Follis F, Kessler RM, Pett SB, Wernly JA. Intrapleural fibrinolytics in management of empyema thoracis. Chest. 1996;110(1):102–106.
- Zuckerman DA, Reed MF, Howington JA, Moulton JS. Efficacy of intrapleural tissuetype plasminogen activator in the treatment of loculated parapneumonic effusions. J Vasc Interv Radiol. 2009;20(8):1066–1069.
- Davies CW, Traill ZC, Gleeson FV, Davies RJ. Intrapleural streptokinase in the management of malignant multiloculated pleural effusions. Chest. 1999;115(3):729– 733.
- 16. Maskell NA, Davies CW, Nunn AJ, et al. First Multicenter Intrapleural Sepsis Trial (MIST1) Group U.K. Controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med. 2005;352(9):865–874.
- 17. Tokuda Y, Matsushima D, Stein GH, Miyagi S. Intrapleural fibrinolytic agents for empyema and complicated parapneumonic effusions: a meta-analysis. Chest. 2006;129(3):783–790.

- 18. Cassina PC et al. Video-assisted thoracoscopy in the treatment of pleural empyema: stage-based management and outcome. J Thorac Cardiovasc Surg 1999;117:234-8.
- 19. Lardinois D et al. Delayed referral and gram-negative organisms increase the conversion thoracotomy rate in patients undergoing video-assisted thoracoscopic surgery for empyema. Ann Thorac Surg 2005;79:1851-6.
- 20. Roberts JR. Minimally invasive surgery in the treatment of empyema: intraoperative decision making. Ann Thorac Surg 2003;76:225-30.
- 21. Navsaria PH, Vogel RJ, Nicol AJ. Thoracoscopic evacuation of retained posttraumatic hemothorax. Ann Thorac Surg 2004;78:282-6.
- 22. Shimizu K, et al. Successful video-assisted mediastinoscopic drainage of descending necrotizing mediastinitis. Ann Thorac Surg 2006;81:2279-81.
- 23. Hope WW, Bolton WD, Stephenson JE. The utility and timing of surgical intervention for parapneumonic empyema in the era of video-assisted thoracoscopy. Am Surg 2005;71:512-4.
- 24. Wurnig PN, et al. Video-assisted thoracic surgery for pleural empyema. Ann Thorac Surg 2006;81:309-13.
- 25. Morrow L E, Jarrett J. Primary Lung Abscess. In: Bope E T, Rakel R E, Kellerman R D, editors. Conn's Current Therapy 2010. 1st ed. Philadelphia: Saunders/Elsevier; 2010:266–267.
- 26. Dryzer SR, Allen ML, Strange C, Sahn SA. A comparison of rotation and nonrotation in tetracycline pleurodesis. Chest. 1993;104(6):1763–1766.
- 27. Light RW. Parapneumonic effusions and empyema. Proc Am Thorac Soc 2006;3:75-80.
- 28. Mwandumba HC, Beeching NJ. Pyogenic lung infections: factors for predicting clinical outcome of lung abscess and thoracic empyema. Curr Opin Pulm Med. 2000;6(3):234–239.
- 29. Stark DD, Federle MP, Goodman PC, Podrasky AE, Webb WR. Differentiating lung abscess and empyema: radiography and computed tomography. AJR Am J Roentgenol. 1983;141(1):163–167.
- 30. Pien GW, Gant MJ, Washam CL, Sterman DH. Use of an implantable pleural catheter for trapped lung syndrome in patients with malignant pleural effusion. Chest. 2001;119(6):1641–1646.
- 31. Chung J, Perrot M D. Pleural effusion and empyema thoracis. In: Bope E T, Rakel R E, Kellerman R D, editors. Conn's Current Therapy 2010. 1st ed. Philadelphia: Saunders/ Elsevier; 2010:263–265.
- 32. Broaddus V C, Light R W. Pleural Effusion. In: Mason R J, Broaddus V C, Martin T R, et al., editors. Textbook of Respiratory Medicine. 5th ed. Philadelphia: Saunders/Elsevier; 2010:1719–1763.
- 33. Bouros D, Plataki M, Antoniou K M. Parapneumonic effusion and empyema: best therapeutic approach. Monaldi Arch Chest Dis. 2001;56(2):144–148.
- 34. Schiza S, Siafakas NM. Clinical presentation and management of empyema, lung abscess and pleural effusion. Curr Opin Pulm Med. 2006;12(3):205–211.