Circulatory biochemical markers and Pulmonary Function in Patients with Idiopathic Pulmonary Fibrosis: A systematic review and Meta-Analysis

Authors

  • Amanullah Department of Physiology, Swat Medical College, Swat – Pakistan
  • Fouzia Qadir Department of Biochemistry, North West School of Medicine, Peshawar - Pakistan
  • Zahida Anwar Department of Biochemistry, Loralai Medical College, Loralai - Pakistan
  • Tahira Anwar Department of Biochemistry, Jhalawan Medical College, Khuzdar - Pakistan
  • Zara Khalid Khan Department of Biochemistry, Rawal Institute of Health Sciences (RIHS), Islamabad – Pakistan
  • Salman Khan Department of Medicine, Gomal Medical College, Dera Ismail Khan - Pakistan

Keywords:

Cystic Fibrosis, Biomarkers, Pulmonary Tests, Meta-analysis

Abstract

Background: A significant part of the pathogenesis of cystic fibrosis (CF) may be played by oxidative stress. Objective: To measure redox abnormalities associated with cystic fibrosis. Methodology: The information databases ‘CINAHL, PsycINFO, CENTRAL, and Medline’ have been thoroughly searched. Standardized mean difference (SMD) and 95% confidence intervals (95% CI) were computed using the mean concentrations of biological markers in the blood of individuals with clinically stable cystic fibrosis (CF) and non-CF controls’. Results: This systematic review analyzed 842 citations, ultimately including 44 studies conducted between 1998 and 2020 across 54 global centers. Most investigations had a ‘cross-sectional design’, with a few controlled trials, and were generally of moderate quality. Key findings indicated that individuals with clinically stable cystic fibrosis (CF) had significantly lower levels of plasma or serum vitamin A (SMD -0.67), β-carotene (SMD -2.18), and vitamin E (SMD -0.68) compared to non-CF controls, with no significant differences in vitamin C (SMD -0.04), 25(OH)D (SMD -0.24), or the vitamin E ratio (SMD -0.36). Trace element levels showed no significant differences for zinc (SMD -0.50) or copper (SMD 0.54), while selenium levels were lower in CF patients in one study. No significant differences were observed in erythrocyte CAT activity (SMD -0.41), erythrocyte SOD activity (SMD 0.03), or plasma ceruloplasmin content (SMD 0.62). The analysis highlights specific biochemical markers that are significantly altered in CF patients compared to non-CF controls. Conclusions: In patients with clinically stable cystic fibrosis, there is strong evidence of decreased antioxidant capacity and increased oxidative stress, according to this comprehensive review and meta-analysis.

References

Elborn JS. Adult care in cystic fibrosis. InSeminars in respiratory and critical care medicine. 2019; 40(06):857-68. Thieme Medical Publishers.

Montgomery ST, Mall MA, Kicic A, Stick SM. Hypoxia and sterile inflammation in cystic fibrosis airways: mechanisms and potential therapies. Eur Respir J. 2017;49:1-13. DOI 10.1183/13993003.00903-2016.

Pillarisetti N, Williamson E, Linnane B, Skoric B, Robertson CF, Robinson P, et al. Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am J Respir Crit Care Med. 2011;184:75–81.

Foundation CF, Patient Registry: Annual Data Report. 2016.

Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Sheppard, Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol. 2014;52:47–57. DOI: 10.1016/j.biocel. 2014.04.001.

Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford university press, USA; 2015.

Lagrange-Puget M, Durieu I, Ecochard RR, Abbas-Chorfa F, Drai J, Steghens JPP, et al. Longitudinal study of oxidative status in 312 cystic fibrosis patients in stable state and during bronchial exacerbation. Pediatr Pulmonol. 2004;38:43–49. DOI: 10.1002/ppul.20041.

Lee I-T, Yang C-M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012;84:581–590. DOI: 10.1016/J.BCP.2012.05.005.

Urquhart DS, Montgomery H, Jaffe A. Assessment of hypoxia in children with cystic fibrosis. Arch Dis Child. 2005;90:1138–1143. DOI: 10.1136/adc.2005.071795.

Yuhai GU, Zhen Z. Significance of the changes occurring in the levels of interleukins, SOD and MDA in rat pulmonary tissue following exposure to different altitudes and exposure times. Exp Ther Med. 2015;10:915–920. DOI: 10.3892/etm.2015.2604.

Ntimbane T, Krishnamoorthy P, Huot C, Legault L, Jacob SV, Brunet S, et al. Oxidative stress and cystic fibrosis-related diabetes: a pilot study in children. J Cyst Fibros. 2008;7:373–384. DOI: 10.1016/j.jcf.2008.01.004.

Linsdell P, Hanrahan JW. Glutathione permeability of CFTR. Am J Physiol. 1998;275

Duranton C, Rubera I, Cougnon M, Melis N, Chargui A, Mograbi B, Tauc M. CFTR is involved in the fine-tuning of intracellular redox status: physiological implications in cystic fibrosis. Am J Pathol. 2012;181:1367–1377. DOI: 10.1016/j.ajpath.2012.06.017.

Gould NS, Min E, Martin RJ, Day BJ. CFTR is the primary known apical glutathione transporter involved in cigarette smoke-induced adaptive responses in the lung. Free Radic Biol Med. 2012;52:1201–1206. DOI: 10.1016/j.freeradbiomed.2012.01.001.

Ziady AG, Hansen J. Redox balance in cystic fibrosis. Int J Biochem Cell Biol. 2014;52:113–123. DOI: 10.1016/j.biocel.2014.03.006.

de Lima Marson FA, Bertuzzo CS, Secolin R, Ribeiro AF, Ribeiro JD. Genetic interaction of GSH metabolic pathway genes in cystic fibrosis. BMC Med Genet. 2013;14:60. DOI: 10.1186/1471-2350-14-60.

de Lima Marson FA, Bertuzzo CS, Ribeiro AF, Ribeiro JD. Polymorphisms in the glutathione pathway modulate cystic fibrosis severity: a cross-sectional study. BMC Med Genet. 2014;15:27. DOI: 10.1186/1471-2350-15-27.

Siwamogsatham O, Dong W, Binongo JN, Chowdhury R, Alvarez JA, Feinman SJ, et al. Relationship between fat-soluble vitamin supplementation and blood concentrations in adolescent and adult patients with cystic fibrosis. Nutr Clin Pract. 2014;29:491–497. DOI: 10.1177/0884533614530170.

Bennett MJ, Medwadowski BF. Vitamin A, vitamin E, and lipids in serum of children with cystic fibrosis or congenital heart defects compared with normal children. Am J Clin Nutr. 1967;20:415–421. DOI: 10.1093/ajcn/20.5.415.

Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, et al. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis. 2012;1822:690–713. DOI: 10.1016/j.bbadis.2011.12.012.

Ntimbane T, Comte B, Mailhot G, Berthiaume Y, Poitout V, Prentki M, et al. Cystic fibrosis-related diabetes: from CFTR dysfunction to oxidative stress. Clin Biochem Rev. 2009;30:153–177.

van ’t Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F2-isoprostane levels across human diseases: a meta-analysis. Redox Biol. 2017;12:582–599. DOI: 10.1016/j.redox.2017.03.024.

Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: conceptual, methodological and technical recommendations. Redox Biol. 2017;12:540–548. DOI: 10.1016/j.redox.2017.03.022.

Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23:1144–1170. DOI: 10.1089/ars.2015.6317.

Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142:231–255. DOI: 10.1038/sj.bjp.0705776.

Turck D, Braegger CP, Colombo C, Declercq D, Morton A, Pancheva R, et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016;35:557–577. DOI: 10.1016/j.clnu.2016.03.004.

Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci. 2018;12:88–93. Available from URL: http://www.ncbi.nlm.nih.gov/pubmed/29896077.

McGrath LT, Mallon P, Dowey L, Silke B, McClean E, McDonnell M, et al. Oxidative stress during acute respiratory exacerbations in cystic fibrosis. Thorax. 1999;54:518–523. DOI: 10.1136/thx.54.6.518.

Nazareth D, Walshaw M. A review of renal disease in cystic fibrosis. J Cyst Fibros. 2013;12:309–319. DOI: 10.1016/j.jcf.2013.03.005.

Neemuchwala F, Ahmed F, Nasr SZ. Prevalence of pelvic incontinence in patients with cystic fibrosis. Glob Pediatr Health. 2017;4:2333794X17743424. DOI: 10.1177/2333794X17743424.

Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B, et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med. 2012;52:2128–2141. DOI: 10.1016/j.freeradbiomed.2012.03.011.

Ugolini D, Neri M, Casilli C, Bonassi S. Development of search filters for retrieval of literature on the molecular epidemiology of cancer. Mutat Res Genet Toxicol Environ Mutagen. 2010;701:107–110. DOI: 10.1016/j.mrgentox.2010.05.016.

Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19:268–288. DOI: 10.1093/humupd/dms059.

Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis. Proc 3rd Symp Syst Rev Beyond Basics Improv Qual Impact, Oxford, 2000, pp. 3–5.

Irwig L, Macaskill P, Berry G, Glasziou P. Bias in meta-analysis detected by a simple, graphical test. Graphical test is itself biased. BMJ. 1998;316. Available from URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2127453/pdf/9310563.pdf.

Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Chichester, United Kingdom, 2015. Available from URL: http://handbook.cochrane.org/.

Dersimonian R, Laird N. Meta-analysis in clinical trials. Stat Med. 1986;188:177–188. DOI: 10.1016/0197-2456(86)90046-2.

James DR, Alfaham M, Goodchild MC. Increased susceptibility to peroxide-induced haemolysis with normal vitamin E concentrations in cystic fibrosis. Clin Chim Acta. 1991;204:279–290.

Bernardi DM, Ribeiro AF, Mazzola TN, Vilela MMS, Sgarbieri VC. The impact of cystic fibrosis on the immunologic profile of pediatric patients. J Pediatr. 2013;89:40–47. DOI: 10.1016/j.jped.2013.02.007.

Tirouvanziam R, Conrad CK, Bottiglieri T, Herzenberg LA, Moss RB, Herzenberg LA. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci USA. 2006;103:4628–4633. DOI: 10.1073/pnas.0511304103.

Wood LG, Fitzgerald DA, Gibson PG, Cooper DM, Collins CE, Garg ML. Oxidative stress in cystic fibrosis: dietary and metabolic factors. J Am Coll Nutr. 2001;20:157–165. DOI: 10.1080/07315724.2001.10719028.

Back EI, Frindt C, Nohr D, Frank J, Ziebach R, Stern M, Ranke M, Biesalski HK. Antioxidant deficiency in cystic fibrosis: when is the right time to take action? Am J Clin Nutr. 2004;80:374–384. DOI: 10.1093/ajcn/80.2.374.

Durieu I, Vericel E, Guichardant D, Roth H, Steghens JP, Drai J, Nove Josserand R, Fontaine E, Lagarde M, Bellon G. Fatty acids platelets and oxidative markers following intravenous n-3 fatty acids administration in cystic fibrosis: an open pilot observational study. J Cyst Fibros. 2007;6:320–326. DOI: 10.1016/j.jcf.2006.12.005.

Nicolaidou P, Stavrinadis I, Loukou I, Papadopoulou A, Georgouli H, Douros K, et al. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur J Pediatr. 2006;165:540–545. DOI: 10.1007/s00431-006-0132-1.

Lee MJ, Kearns MD, Smith EM, Hao L, Ziegler TR, Alvarez JA, et al. Free 25-hydroxyvitamin D concentrations in cystic fibrosis. Am J Med Sci. 2015;350:374–379. DOI: 10.1097/MAJ.0000000000000592.

Kearns GL, Crom WR, Karlson KH, Mallory GB, Evans WE. Hepatic drug clearance in patients with mild cystic fibrosis. Clin Pharmacol Ther. 1996;59:529–540. DOI: 10.1016/S0009-9236(96)90181-2.

Mocchegiani E, Provinciali M, Di Stefano G, Nobilini A, Caramia G, Santarelli L, et al. Role of the low zinc bioavailability on cellular immune effectiveness in cystic fibrosis. Clin Immunol Immunopathol. 1995;75:214–224. DOI: 10.1006/clin.1995.1074.

Hahn TJ, Squires AE, Halstead LR, Strominger DB. Reduced serum 25-hydroxyvitamin D concentration and disordered mineral metabolism in patients with cystic fibrosis. J Pediatr. 1979;94:38–42.

Jacob RA, Sandstead HH, Solomons NW, Rieger C, Rothberg R. Zinc status and vitamin A transport in cystic fibrosis. Am J Clin Nutr. 1978;31:638–644.

Stead RJ, Houlder S, Agnew J, Thomas M, Hodson ME, Batten JC, et al. Vitamin D and parathyroid hormone and bone mineralisation in adults with cystic fibrosis. Thorax. 1988;43:190–194.

Mangione S, Patel DD, Levin BR, Fiel SB. Erythrocytic glutathione in cystic fibrosis: a possible marker of pulmonary dysfunction. Chest. 1994;105:1470–1473. DOI: 10.1378/chest.105.5.1470.

Olveira G, Olveira C, Dorado A, García-Fuentes E, Rubio E, Tinahones F, et al. Cellular and plasma oxidative stress biomarkers are raised in adults with bronchiectasis. Clin Nutr. 2013;32:112–117. DOI: 10.1016/j.clnu.2012.06.002.

Sadowska-Bartosz I, Galiniak S, Bartosz G, Rachel M. Oxidative modification of proteins in pediatric cystic fibrosis with bacterial infections. Oxid Med Cell Longev. 2014;389629. DOI: 10.1155/2014/389629.

McGrath LT, McCall D, Hanratty CG, Brennan S, Devine A, McCauley DF, et al. Individuals with cystic fibrosis do not display impaired endothelial function or evidence of oxidative damage in endothelial cells exposed to serum. Clin Sci (Lond). 2001;101:507–13. DOI: 10.1042/CS20010114.

Hubbard VS, Dunn GD, di Sant'Agnese PA. Abnormal fatty-acid composition of plasma-lipids in cystic fibrosis. A primary or a secondary defect? Lancet. 1977;310:1302–1304. DOI: 10.1016/S0140-6736(77)90359-2.

Winklhofer-Roob BM, Puhl H, Khoschsorur GA, van’t Hof MA, Esterbauer H, Shmerling DH. Enhanced resistance to oxidation of low density lipoproteins and decreased lipid peroxide formation during beta-carotene supplementation in cystic fibrosis. Free Radic Biol Med. 1995;18:849–859. DOI: 10.1016/0891-5849(94)00203-v.

Schupp C, Olano-Martin E, Gerth C, Morrissey BM, Cross CE, Werner JS. Lutein, zeaxanthin, macular pigment, and visual function in adult cystic fibrosis patients. Am J Clin Nutr. 2004;79:1045-52. Available from URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2603302&tool=pmcentrez&rendertype=abstract.

Olveira C, Padilla A, Dorado A, Contreras V, Garcia Fuentes E, Rubio Martin E, et al. Inflammation and oxidation biomarkers in patients with cystic fibrosis: the influence of azithromycin. Eurasian J Med. 2017;49:118–123. DOI: 10.5152/eurasianjmed.2017.17010.

Yadav K, Singh M, Angurana SK, Attri SV, Sharma G, Tageja M, et al. Evaluation of micronutrient profile of North Indian children with cystic fibrosis: a case-control study. Pediatr Res. 2014;75:762–766. DOI: 10.1038/pr.2014.30.

Ambroszkiewicz J, Sands D, Gajewska J, Chelchowska M, Laskowska-Klita T. Bone turnover markers, osteoprotegerin and RANKL cytokines in children with cystic fibrosis. Adv Med Sci. 2013;58:338–343. DOI: 10.2478/ams-2013-0011.

Madarasi A, Lugassi A, Greiner E, Holics K, Biró L, Mozsary E. Antioxidant status in patients with cystic fibrosis. Ann Nutr Metab. 2000;44:207–211. DOI: 10.1159/000046685.

Vaisman N, Kerasin E, Hahn T, Trifon S, Voet H, Tabachnik E. Increased neutrophil chemiluminescence production in patients with cystic fibrosis. Metabolism. 1994;43:719–722. DOI: 10.1016/0026-0495(94)90120-1.

Oudshoorn JH, Lecluse AL, van den Berg RL, Vaes WHJ, van der Laag J, Houwen RHJ. Decreased coenzyme Q10 concentration in plasma of children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2006;43:646–650. Available from URL: http://www.ncbi.nlm.nih.gov/pubmed/17130743.

Dominguez C, Gartner S, Linan S, Cobos N, Moreno A. Enhanced oxidative damage in cystic fibrosis patients. Biofactors. 1998;8:149–153.

Reiter EO, Brugman SM, Pike JW, Pitt S, Dokoh S, Haussler MR, et al. Vitamin D metabolites in adolescents and young adults with cystic fibrosis: effects of sun and season. J Pediatr. 1985;106:21–26. DOI: 10.1016/S0022-3476(85)80458-3.

Cobanoglu N, Atasoy H, Ozcelik U, Yalcin E, Dogru D, Kiper N, Gocmen A. Relation of bone mineral density with clinical and laboratory parameters in prepubertal children with cystic fibrosis. Pediatr Pulmonol. 2009;44:706–712. DOI: 10.1002/ppul.21050.

Rovner AJ, Stallings VA, Schall JI, Leonard MB, Zemel BS. Vitamin D insufficiency in children, adolescents, and young adults with cystic fibrosis despite routine oral supplementation. Am J Clin Nutr. 2007;86:1694–1699. DOI: 10.1093/ajcn/86.6.1694.

Aris RM, Ontjes DA, Buell HE, Blackwood AD, Lark RK, Caminiti M, et al. Abnormal bone turnover in cystic fibrosis adults. Osteoporos Int. 2002;13:151–157. DOI: 10.1007/s001980200007.

Wahab A, Shahin A, Allangawi M, Chandra P, Abdel Rahman MO, Soliman A. Serum zinc concentration in cystic fibrosis patients with CFTRI1234V mutation associated with pancreatic sufficiency. Clin Res J. 2017;11:305–310. DOI: 10.1111/crj.12335.

Percival SS, Kauwell GPA, Bowser E, Wagner M. Altered copper status in adult men with cystic fibrosis. J Am Coll Nutr. 1999;18:614–619. DOI: 10.1080/07315724.1999.10718896.

Best K, McCoy K, Gemma S, Disilvestro RA. Copper enzyme activities in cystic fibrosis before and after copper supplementation plus or minus zinc. Metabolism. 2004;53:37–41. DOI: 10.1016/j.metabol.2003.07.017.

Sadowska-Woda I, Rachel M, Pazdan J, Bieszczad-Bedrejczuk E, Pawliszak K. Nutritional supplement attenuates selected oxidative stress markers in pediatric patients with cystic fibrosis. Nutr Res. 2011;31:509–518. DOI: 10.1016/j.nutres.2011.07.002.

Lands LC, Grey VL, Grenier C. Total plasma antioxidant capacity in cystic fibrosis. Pediatr Pulmonol. 2000;29:81–87. DOI: 10.1002/(SICI)1099-0496(200002)29:2<81::AID-PPUL1>3.0.CO;2-N.

Antus B, Drozdovszky O, Barta I, Kelemen K. Comparison of airway and systemic malondialdehyde levels for assessment of oxidative stress in cystic fibrosis. Lung. 2015;193:597–604. DOI: 10.1007/s00408-015-9739-1.

Collins CE, Quaggiotto P, Wood L, O'Loughlin EV, Henry RL, Garg ML. Elevated plasma levels of F2(α) isoprostane in cystic fibrosis. Lipids. 1999;34:551–556. DOI: 10.1007/s11745-999-0397-1.

Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med. 2000;28:625–635. DOI: 10.1016/S0891-5849(99)00275-0.

Stonebraker JR, Ooi CY, Pace RG, Corvol H, Knowles MR, Durie PR, et al. Features of severe liver disease with portal hypertension in patients with cystic fibrosis. Clin Gastroenterol Hepatol. 2016;14:1207–1215. DOI: 10.1016/j.cgh.2016.03.041.

Souza dos Santos Simon MI, Drehmer M, de Abreu e Silva FA, Hoffmann A, Druck Ricachinewsky C, de Fonseca Andrade Procianoy E, et al. Association of nutritional status, plasma albumin levels and pulmonary function in cystic fibrosis. Nutr Hosp. 2011;26:1322–1327. DOI: 10.3305/nh.2011.26.6.4931.

Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol. 1993;75:2419–2424. DOI: 10.1152/jappl.1993.75.6.2419.

Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM, Kirklin WG. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. Faseb J. 2004;18:1246–1248. DOI: 10.1096/fj.03-0971fje.

Cheng Z, Zhang J, Ballou DP, Williams CH Jr. Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase. Chem Rev. 2011;111:5768–5783. DOI: 10.1021/cr100006x.

Imhoff BR, Hansen JM. Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species. Biochem J. 2009;424:491–500. DOI: 10.1042/bj20091286.

Chen J, Kinter M, Shank S, Cotton C, Kelley TJ, Ziady AG. Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS One. 2008;3. DOI: 10.1371/journal.pone.0003367.

Ciofu O, Smith S, Lykkesfeldt J. Antioxidant supplementation for lung disease in cystic fibrosis. Cochrane Database Syst Rev. 2019. DOI: 10.1002/14651858.CD007020.pub4.

Madarasi A, Lugassi A, Greiner E, Holics K, Biro L, Mozsary E. Antioxidant status in patients with cystic fibrosis. Ann Nutr Metab. 2000;44:207–211. DOI: 10.1159/000046685.

Nebot C, Moutet C, Huet P, Xu JZ, Yadan JC, Chaudiere J. Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem. 1993;214:442–451. DOI: 10.1006/abio.1993.1521.

Gifford AH, Miller SD, Jackson BP, Hampton TH, O'Toole GA, Stanton BA, Parker HW. Iron and CF-related anemia: expanding clinical and biochemical relationships. Pediatr Pulmonol. 2011;46:160–165. DOI: 10.1002/ppul.21335.

Sidlova K, Skalicka V, Kotaska K, Pechova M, Chada M, Bartosova J, et al. Serum α-glutathione S-transferase as a sensitive marker of hepatocellular damage in patients with cystic fibrosis. Physiol Res. 2003;52:361–365.

Hung JC, Howie AF, Beckett GJ, Sood M, Hambleton G, Super M. The use of human glutathione S-transferase A1 in the detection of cystic fibrosis liver disease. J Paediatr Child Health. 1998;34:335–338.

Pradas I, Jove M, Huynh K, Puig J, Ingles M, Borras C, et al. Exceptional human longevity is associated with a specific plasma phenotype of ether lipids. Redox Biol. 2019;101127. DOI: 10.1016/J.REDOX.2019.101127.

Milne GL. Classifying oxidative stress by F2-Isoprostane levels in human disease: the re-imagining of a biomarker. Redox Biol. 2017;12:897–898. DOI: 10.1016/j.redox.2017.04.028.

Milne GL, Musiek ES, Morrow JD. F2-Isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005;10:10–23. DOI: 10.1080/13547500500216546.

van ‘t Erve TJ, Lih FB, Kadiiska MB, Deterding LJ, Eling TE, Mason RP. Reinterpreting the best biomarker of oxidative stress: the 8-iso-PGF2α/PGF2α ratio distinguishes chemical from enzymatic lipid peroxidation. Free Radic Biol Med. 2015;83:245–251. DOI: 10.1016/J.FREERADBIOMED.2015.03.004.

Forman HJ, Augusto O, Brigelius-Flohe R, Dennery PA, Kalyanaraman B, Ischiropoulos H, Mann GE, et al. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic Biol Med. 2015;78:233–235. DOI: 10.1016/j.freeradbiomed.2014.10.504.

D'Orazio M, Pacello F, Battistoni A. Extracellular glutathione decreases the ability of Burkholderia cenocepacia to penetrate into epithelial cells and to induce an inflammatory response. PLoS One. 2012;7. DOI: 10.1371/journal.pone.0047550.

Montuschi P, Ciabattoni G, Paredi P, Pantelidis P, Bois RM, Kharitonov SA, Barnes PJ. 8-Isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Diseases. 1998;158:1524–1527.

Leclercq A, Gauthier B, Rosner V, Weiss L, Moreau F, Constantinescu AA, Kessler R, et al. Early assessment of glucose abnormalities during continuous glucose monitoring associated with lung function impairment in cystic fibrosis patients. J Cyst Fibros. 2014;13:478–484. DOI: 10.1016/j.jcf.2013.11.005.

Koch C, Rainisio M, Madessani U, Harms HK, Hodson ME, Mastella G, et al. Presence of cystic fibrosis-related diabetes mellitus is tightly linked to poor lung function in patients with cystic fibrosis: data from the European Epidemiologic Registry of Cystic Fibrosis. Pediatr Pulmonol. 2001;32:343–350. DOI: 10.1002/ppul.1142.

Causer AJ, Shute JK, Cummings MH, Shepherd AI, Wallbanks SR, Allenby MI, et al. The implications of dysglycaemia on aerobic exercise and ventilatory function in cystic fibrosis. J Cyst Fibros. 2019. DOI: 10.1016/j.jcf.2019.09.014.

Moran A, Dunitz J, Nathan B, Saeed A, Holme B, Thomas W. Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care. 2009;32:1626–1631. DOI: 10.2337/dc09-0586.

Ntimbane T, Mailhot G, Spahis S, Rabasa-Lhoret R, Kleme M-LL, Melloul D, et al. CFTR silencing in pancreatic beta-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab. 2016;310–E212. DOI: 10.1152/ajpendo.00333.2015.

van ′t Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: a meta-analysis on 8-iso-Prostaglandin F2α. Redox Biol. 2018. DOI: 10.1016/j.redox.2018.05.003.

Barreiro E. Role of protein carbonylation in skeletal muscle mass loss associated with chronic conditions. Proteomes. 2016;4:18. DOI: 10.3390/proteomes4020018.

Rodriguez DA, Kalko S, Puig-Vilanova O, Perez-Olabarría M, Falciani F, Gea J, et al. Muscle and blood redox status after exercise training in severe COPD patients. Free Radic Biol Med. 2012;52:88–94. DOI: 10.1016/j.freeradbiomed.2011.09.022.

Gruet M, Troosters T, Verges S. Peripheral muscle abnormalities in cystic fibrosis: etiology, clinical implications and response to therapeutic interventions. J Cyst Fibros. 2017;16:538–552. DOI: 10.1016/J.JCF.2017.02.007.

Hulzebos HJE, Jeneson JAL, van der Ent CK, Takken T. Cross Talk opposing view: skeletal muscle oxidative capacity is not altered in cystic fibrosis patients. J Physiol. 2017;595:1427–1428. DOI: 10.1113/JP272505.

Downloads

Published

2021-09-02

How to Cite

Amanullah, Qadir, F., Anwar, Z. ., Anwar, T., Khan, Z. K., & Khan, S. (2021). Circulatory biochemical markers and Pulmonary Function in Patients with Idiopathic Pulmonary Fibrosis: A systematic review and Meta-Analysis. Pakistan Journal of Chest Medicine, 27(3), 209–221. Retrieved from https://www.pjcm.net/index.php/pjcm/article/view/632

Issue

Section

Review Article

Similar Articles

You may also start an advanced similarity search for this article.